The Design of Reflectable Capabilities

This document is intended to document the design choices that we have made regarding the
class ReflectCapability and its subtypes, which is a set of classes declared in the library
package:reflectable/capability.dart in package reflectable. We use the word
capability to designate instances of subtypes of ReflectCapability. This class and its
subtypes are used when specifying the level of support that a client of the reflectable library
will get for reflective operations in a given context, e.g., for instances of a specific class. We use
the word client when referring to any software artifact which is importing and using the package
reflectable, generally assuming that it is a package. Using one or another capability as
metadata on a class C in client code may determine whether or not it is possible to reflectively
invoke a method on an instance of C via an InstanceMirror. Given that the motivation for
having the package reflectable in the first place is to save space consumed by less frugal
kinds of reflection, the ability to restrict reflection support to the actual needs is a core point in
the design of the package.

Context and Design Ideas

To understand the topics covered in this document, we need to briefly outline how to understand
the package reflectable as a whole. Then we proceed to explain how we partition the
universe of possible kinds of support for reflection, such that we have a set of kinds of reflection
to choose from. Finally we explain how capabilities are used to make a selection among these
choices, and how they can be applied to specific parts of the client program.

The Package Reflectable

The package reflectable is an example of support for mirror-based introspective reflection
in object-oriented languages in general, and it should be understandable as such'. More
specifically, the reflection API offered by the package reflectable has been copied verbatim
from the API offered by the package dart :mirrors, and then modified in a few ways. As a
result, code using dart:mirrors should be very similar to corresponding code using
reflectable. The differences that do exist were introduced for two reasons:

e By design, some operations which are declared as top-level functions in
dart:mirrors are declared as methods on the class Reflectable in the package
reflectable, because instances of subclasses thereof, known as reflectors, are
intended to play the role as mirror systems?, and these operations are mirror system
specific. For instance, the top-level function reflect in dart:mirrors corresponds

' Bracha, Gilad, and David Ungar. "Mirrors: design principles for meta-level facilities of object-oriented
programming languages." ACM SIGPLAN Notices 24 Oct. 2004: 331-344.
2 Bracha, Gilad, and David Ungar, op. cit., or search ‘mirror system’ later in this section.

https://github.com/dart-lang/reflectable
https://github.com/dart-lang/reflectable

to two different methods (with different semantics, so they cannot be merged) for two
different mirror systems.

e Some proposals have been made for changes to the dart :mirrors APIL. We took the
opportunity to try out an updated API by making modifications in the signatures of certain
methods. For instance, InstanceMirror. invoke will return the result from the
method invocation, not an InstanceMirror wrapping it. In general, mirror operations
return base level values rather than mirrors thereof in the cases where the mirrors are
frequently discarded immediately, and where it is easy to create the mirror if needed.
Mirror class method signatures have also been modified in one more way: Where
dart:mirrors methods accept arguments or return results involving Symbo1l,
package reflectable uses string. This helps avoiding difficulties associated with
minification (which is an automated, pervasive renaming procedure that is applied to
programs mainly in order to save space), because String values remain unchanged
throughout compilation.

In summary, the vast majority of the API offered by the package reflectable is identical to
the API offered by dart:mirrors, and design documents about that API or about reflection in
general® will serve to document the underlying ideas and design choices.

Reflection Capability Design

The obvious novel element in package reflectable is that it allows clients to specify the level
of support for reflection in a new way, by using capabilities in metadata. This section outlines
the semantics of reflection capabilities, i.e., which kinds of criteria they should be able to
express.

In general, we maintain the property that the specifications of reflection support with one
reflector (that is, inside one mirror-system) are monotone, in the sense that any program having
a certain amount of reflection support specifications will support at least as many reflective
operations if additional specifications are added to that reflector. In other words, reflection
support specifications can request additional features, they can never prevent any reflection
features from being supported. As a result, we obtain a modularity law: a programmer who
browses source code and encounters a reflection support specification s somewhere can
always trust that the corresponding kind of reflection support will be present in the program.
Other parts of the program may still add even more reflection support, but they cannot withdraw
the features requested by Ss. Similarly, the specifications are idempotent, that is, multiple
specifications requesting the same feature or overlapping feature sets are harmless, it makes
no difference whether a particular thing has been requested once or several times.

3 Smith, Brian Cantwell. "Procedural reflection in programming languages." 1982.
4 Sobel, Jonathan M, and Daniel P Friedman. "An introduction to reflection-oriented programming."
Proceedings of reflection Apr. 1996.

Mirror APl Based Capabilities

The level of support for reflection may in principle be specified in many ways: there is a plethora
of ways to use reflection, and ideally the client should be able to request support for exactly that
which is needed. In order to drastically simplify this universe of possibilities and still maintain a
useful level of expressive power, we have decided to use the following stratification as an
overall framework for the design:

e The most basic kind of reflection support specification simply addresses the API of the
mirror classes directly, that is, it is concerned with “turning on” support for the use of
individual methods or small groups of methods in the mirror classes. For instance, it is
possible to turn on support for InstanceMirror. invoke using one capability, and
another capability will turn on ClassMirror.invoke. In case a supported method is
called it behaves like the corresponding method in a corresponding mirror class from
dart:mirrors;in case an unsupported method is called, an exception is thrown.

e As arefinement of the API based specification, we have chosen to focus on the
specification of allowable argument values given to specific methods in the API. For
instance, it is possible to specify a predicate which is used to filter existing method
names such that InstanceMirror. invoke is supported for methods whose name
satisfies that predicate. An example usage could be testing, where reflective invocation
of all methods whose name ends in ‘...Test’ might be a convenient feature, as opposed
to the purely static approach where someone would have to write a centralized listing of
all such methods, which could then be used to call them.

With these mechanisms, it is possible to specify support for reflection in terms of mirrors and the
features that they offer, independently of the actual source code in the client program.

Reflectee Based Capabilities

Another dimension in the support for reflection is the selection of which parts of the client
program the mirrors will be able to reflect upon, both when a ClassMirror reflects upon one
of those classes, and when an InstanceMirror reflects upon one of its instances. In short,
this dimension is concerned with the available selection of reflectees.

The general feature covering this type of specification is quantification over source code
elements—in particular over classes (future extensions will deal with other entities). In this area
we have focused on the mechanisms listed below. Note that MyReflectable is assumed to
be the name of a subclass of Reflectable and myReflectable is assumed to be a const
instance of MyReflectable, by canonicalization the unique const instance thereof. This
allows us to refer to the general concept of a reflector in terms of the example,
myReflectable, along with its class and similar associated declarations.

Reflection support is initiated by invoking one of the methods reflect or
reflectType onmyReflectable. We have chosen to omit the capability to do
reflect (in the sense that this is always possible) because there is little reason for
having reflection at all without support for instance mirrors. In contrast, we have chosen
to have a capability for obtaining class mirrors and similar source code oriented mirrors,
which also controls the ability to perform reflectType; this is because having these
mirrors may have substantial cost in terms of program size. Finally, we have chosen to
omit the method reflectClass, because it may be replaced by reflectType,
followed by originalDeclaration when isOriginalDeclarationis false.
The basic mechanism to get reflection support for a class C is to attach metadata to it,
and this metadata must be a reflector such as myReflectable. The class
Reflectable has a constructor which is const and takes a single argument of type
List<ReflectCapability> and another constructor which takes up to ten
arguments of type ReflectCapability (thus avoiding the boilerplate that explicitly
makes it a list). MyReflectable must have a single constructor which is const and
takes zero arguments. It is thus enforced that MyReflectable passes the
List<ReflectCapability> inits constructor via a superinitializer, such that every
instance of MyReflectable has the same state, “the same capabilities”. In summary,
this basic mechanism will request reflection support for one class, at the level specified
by the capabilities stored in the metadata.
The reflection support specification can be non-local, that is, it could be placed in a
different location in the program than on the target class itself. This is needed when
there is a need to request reflection support for a class in a library that cannot be edited
(it could be predefined, it could be provided by a third party such that modifications incur
repeated maintenance after updates, etc.). This feature has been known as side tags
since the beginnings of the package reflectable. Currently they are attached as
metadata to an import directive for the library
package:reflectable/reflectable.dart, butthey could in principle be
attached to any program element that admits metadata, or they could occur in other
const contexts, as long as there is a well-defined convention for finding them such that
they can have an effect.
Quantification generalizes the single-class specifications by allowing a single
specification to specify that the capabilities given as its arguments should apply to a set
of classes or other program elements. It is easy to provide quantification mechanisms,
but we do not want to pollute the package with a bewildering richness of quantification
mechanisms, so each of the ones we have should be comprehensible and reasonably
powerful, and they should not overlap. So far, we have focused on the following variants:
o It should be possible to specify that one or more specific classes get a specific
level of reflection support; this is a simple generalization of side tags where the
target is a list of classes rather than a single class.
o It should be possible to request reflection support for a set of classes chosen in a
more abstract manner than by enumeration. Obvious candidate quantification

mechanisms quantify over all superclasses of a given class; over all supertypes
of a given class; over all subclasses of a given class; over all subtypes of a given
class; and over all classes whose name matches a given pattern.

o Quantification as in the previous bullet is centralized because it is based on one
specification which is then used to ‘query’ the whole program (or certain large
parts of it) for matching entities. It is common and useful to supplement this with
a decentralized mechanism, where programmers manually enumerate the
members of a set, for instance by attaching a certain marker as metadata to
those members. This makes it possible to maintain the set precisely and
explicitly, even in the cases where the members do not share obvious common
traits that makes the centralized approach convenient. A good example is that a
set of methods can be given reflective support by annotating them with metadata;
for instance, we may wish to be able to reflectively invoke all methods marked
with @businessRule.

We subscribe to a point of view where reflective operations are divided into (a) operations
concerned with the dynamic behavior of class instances, and (b) operations concerned with the
structure of the program; let us call the former behavioral operations and the latter introspective
operations. As an example, using ITnstanceMirror. invoke in order to execute a method on
the reflectee is a behavioral operation, whereas it is an introspective operation to use
ClassMirror.declarations in order to investigate the set of members that an instance of
the reflectee class would have.

An important consequence of this distinction is that behavioral operations are concerned with
the actual behaviors of objects, which means that inherited method implementations have the
same status as method implementations declared in the class which is the runtime type of the
reflectee. Conversely, introspective operations are concerned with source code entities such as
declarations, and hence the declarations reported for a given class does not include
inherited declarations, they must be found by explicitly iterating over the superclass chain.

Finally, we need to introduce the notion of a mirror system, that is, a set of features which
provides support for mirror based reflection. This is because we may have several of them: With
a choice of a level of reflection support (based on the mirror APIs), and a choice of classes for
which this level of support should be provided (based on reflectee selection), it is reasonable to
say that we have specified a mirror system. Using multiple mirror systems is relevant in cases
where some classes (and/or their instances) require very different levels of support. For
example, when a few classes require extensive reflection support and a large number of other
classes require just a little bit, using a powerful mirror system with the former and a minimalist
one with the latter may be worth the effort, due to the globally improved resource economy.
Some extra complexity must be expected; e.g., if we can obtain both a “cheap” and a “powerful”
mirror for the same object it will happen via something like
myCheapReflectable.reflect (o) and myPowerfulReflectable.reflect (o), and
it is then up to the programmer to avoid asking the cheap one to do powerful things.

Specifying Reflection Capabilities

As mentioned on page 1, reflection capabilities are specified using the subtype hierarchy rooted
inthe class ReflectCapability,in package:reflectable/capability.dart.
Instances of these classes are used to build something that may well be considered as abstract
syntax trees for a domain specific language. This section describes how this setup can be used
to specify reflection support.

The subtype hierarchy under ReflectCapability is sealed, in the sense that there is a set
of subtypes of ReflectCapability in that library, and there should never be any other
subtypes of that class; the language does not enforce this concept, but it is a convention that
should be followed.

Being used as const values, instances of these classes obviously cannot have mutable state,
but some of them do contain const values such as Strings or other capabilities. They do not
have methods, except the ones that they inherit from Object. Altogether, this means that
instances of these classes cannot “do anything”, but they can be used to build immutable trees,
and the universe of possible trees is fixed because the set of classes is fixed. This makes the
trees similar to abstract syntax trees, and we can ascribe a semantics to these syntax trees from
the outside. That semantics may be implemented by an interpreter or a translator. The
sealedness of the set of classes involved is required because an unknown subtype of
ReflectCapability would not have a semantics, and interpreters and translators would not
be able to handle them (and we haven’t been convinced that a suitable level of extensibility in
those interpreters and translators is worth the effort).

In other words, we specify reflection capabilities by building an abstract syntax tree for an
expression in a domain specific language; let us call that language the reflectable capability
language.

It is obviously possible to have multiple representations of expressions in this language, and we
have considered introducing a traditional, textual syntax for it.° In this document, we will discuss
this language in terms of its grammatical structure, along with an informal semantics of each
construct.

Specifying Mirror APl Based Capabilities

5 We could have a parser that accepts a String, parses it, and yields an abstract syntax tree consisting of instances of subtypes of
ReflectCapability, orreports a syntax error. A Reflectable constructor taking a String argument could be provided, and
the string could be parsed when needed. This would be a convenient (but less safe) way for programmers to specify reflection
support, as an alternative to the current approach where the abstract syntax trees must be specified directly.

Figure 1 shows the raw material for the elements in one part of the reflectable capability
language grammar. The left side of the figure contains tokens representing abstract concepts
for clustering, and the right side contains tokens representing each of the methods in the entire
mirror API. A few tokens represent more than one method (for instance, all of
VariableMirror, MethodMirror, and TypeVariableMirror have an isStatic getter,
and metadata is also defined in two classes), but they have been merged into one token
because those methods play the same role semantically in all contexts where they occur. In
other cases where the semantics differ (invoke, invokeGetter, invokeSetter, and
declarations) there are multiple tokens for each method name, indicating the enclosing

mirror class with a prefix ending in * .

’

Concept Specialization

invocation instance invoke | class_invoke | library invoke | instance invokeGetter |
class invokeGetter | library invokeGetter | instance invokeSetter |
class_invokeSetter | library invokeSetter | delegate | apply | newInstance

naming simpleName | qualifiedName | constructorName

classification isPrivate | isToplLevel | isImport | isExport | isDeferred | isShow |
isHide | isOriginalDeclaration | isAbstract | isStatic | isSynthetic |
isRegularMethod | isOperator | isGetter | isSetter | isConstructor |
isConstConstructor | isGenerativeConstructor | isRedirectingConstructor |
isFactoryConstructor | isFinal | isConst | isOptional | isNamed |
hasDefaultValue | hasReflectee | hasReflectedType

annotation metadata

typing instance type | variable type | parameter type | typeVariables |
typeArguments | originalDeclaration | isSubtypeOf | isAssignableTo |
superClass | superInterfaces | mixin | isSubclassOf | returnType |
upperBound | referent

concretization reflectee | reflectedType

introspecﬁon owner | function | uri | library declarations | class_declarations |
libraryDependencies | sourcelibrary | targetLibrary | prefix | combinators
| instanceMembers | staticMembers | parameters | callMethod | defaultValue

text location | source

Figure 1. Reflectable capability language API raw material.

Figure 2 shows a reduction of this raw material to a set of capabilities that we consider
reasonable. It does not allow programmers to select their capabilities with the same degree of
detail, but we expect that the complexity reduction is sufficiently valuable to justify the less
fine-grained control.

We have added RegExp arguments, specifying that each of these capabilities can meaningfully
apply a pattern matching constraint to select the methods, getters, etc. which are included. With

the empty RegExp as the default value, all entities in the relevant category are included when
no RegExp is given. Similarly, we have created variants taking a MetadataClass argument
which expresses that an entity in the relevant category is included iff it has been annotated with
metadata whose type is a subtype of the given MetadataClass. This provides support for
centralized and slightly abstract selection of entities using regular expressions, and it provides
support for decentralized selection of entities using metadata to explicitly mark the entities. It is
important to note that the MetadataClass is potentially unrelated to the reflectable package:
We expect the use case where some metadata class from a different package happens to fit
well, such that, for instance, it is already attached to exactly the relevant set of methods.

Non-terminal | Expansion

apiSelection invocation | naming | classification | annotation | typing | introspection

invocation instanceInvoke ([RegExp]l) | instanceInvokeMeta (MetfadataClass) |
staticInvoke ([RegEXp]l) | staticInvokeMeta (MetadataClass) |
newInstance ([RegEXp]) | newlInstanceMeta (MetadataClass)

naming name

classification classify

annotation metadata
typing type ([UpperBound]) | typeRelations
introspection owner | declarations | uri | libraryDependencies

Figure 2. Reflectable capability language APl grammar tokens.

The category text was removed because we do not plan to support reflective access to the
source code as a whole at this point; naming has been expressed atomically as name because
we do not want to distinguish among the different kinds of names, and similarly for all the
classification predicates, and annotation. The category concretization was removed because it
is trivial to support these features, so they are always enabled.

We have omitted apply and function because we do not have support for ClosureMirror
and we do not expect to get it anytime soon.

Moreover, delegate was made implicit such that the ability to invoke a method implies the
ability to delegate to it.

The category typing was simplified in several ways: instance type was renamed into type
because of its prominence. It optionally receives an UpperBound argument which puts a limit on
the available class mirrors (class mirrors will only be supported for classes which are subclasses
of that UpperBound). The method reflectType on reflectors is only supported when this

capability is present, and only on class mirrors passing the UpperBound, if any. The capabilities
variable type, parameter type, and returnType were unified into type because they
are concerned with lookups for the same kind of mirrors. To give some control over the level of
detail in the type related mirrors, typevariables, typeArguments,
originalDeclaration, isSubtypeOf, isAssignableTo, superClass,
superInterfaces, mixin, isSubclassOf, upperBound, and referent were unified into
typeRelations; they all address relations among types, type variables, and typedefs, and
it may be a substantial extra cost to preserve information about these topics if it is not used.

The category introspection was also simplified: We unified class declarations,

library declarations, instanceMembers, staticMembers, callMethod,
parameters, and defaultValue into declarations. Finally we unified import and export
properties into 1ibraryDependencies such that it subsumes sourceLibrary,
targetLibrary, prefix, and combinators. We have retained the owner capability
separately, because we expect the ability to look up the enclosing declaration for a given
declaration to be too costly to include implicitly as part of another capability; and we have
retained the uri capability because the preservation of information about URlIs in JavaScript
translated code (which is needed in order to implement the method uri on a library mirror) has
been characterized as a security problem in some contexts.

Note that certain reflective methods are non-elementary in the sense that they can be
implemented entirely based on other reflective methods, the elementary ones. This affects the
following capabilities: i sSubtypeOf, isAssignableTo, isSubclassOf,
instanceMembers, and staticMembers. These methods can be implemented in a general
manner even for transformed programs, so they are provided as part of the reflectable
package rather than being generated. Hence, they are supported if and only if the methods they
rely on are supported. This is what it means when we say that instanceMembers is ‘unified
into declarations’.

Covering Multiple API Based Capabilities Concisely

In order to avoid overly verbose syntax in the cases where relatively broad reflection support is
requested, we have chosen to introduce some grouping tokens. They do not contribute anything
new, they just offer a more concise notation for certain selections of capabilities that are
expected to occur together frequently. Figure 3 shows these grouping tokens. As an aid to
remember what this additional syntax means, we have used words ending in ‘ing’ to give a hint
about the tiny amount of abstraction involved in grouping several capabilities into a single
construct.

Group Meaning

invoking ([RegEXp]) instanceInvoke ([RegExp]),
staticInvoke ([RegExp]),
newInstance ([RegExp])

invokingMeta (MetadataClass) instanceInvokeMeta (MetadataClass) ,
staticInvokeMeta (MetadataClass) ,
newInstanceMeta (MetadataClass)

typing ([UpperBound]) type ([UpperBound]), name, classify,
metadata, typeRelations, owner,
declarations, uri,
libraryDependencies

Figure 3. Grouping tokens for the reflectable capability language.

The semantics of including the capability invoking (RegExp) where RegExp stands for a
given argument is identical to the semantics of including all three capabilities in the same row on
the right hand side of the figure, giving all of them the same RegExp as argument. Similarly,
invoking () without an argument requests support for reflective invocation of all instance
methods, all static methods, and all constructors. The semantics of including the capability
invokingMeta (MetadataClass) is the same as the semantics of including all three
capabilities to the right in the same row, with the same argument. Finally, the semantics of
including typing (UpperBound) with a given UpperBound is to request support for all the
capabilities on the right, passing UpperBound to the type () capability; that is, requesting
support for every feature associated with information about the program structure.

Specifying Reflectee Based Capabilities

In the previous section we found a way to specify mirror APl based capabilities as a grammar. It
is very simple, because it consists of terminals only, apart from the fact that some of these
terminals take an argument that is used to restrict the supported arguments to the matching
names. As shown in Fig. 2, the non-terminal apiSelection covers them all. We shall use them
several at a time, so the typical usage is a list, written as apiSelection™.

In this section we discuss how the reflection support specified by a given apiSelection* can be
requested for a specific set of program elements. Currently the only supported kind of program
element is classes, but this will be generalized later. The program elements that receive
reflection support are called the targets of the specification, and the specification itself is given
as a superinitializer in a subclass (call it M\yReflectable) of class Reflectable, with a
unique instance (call it myReflectable). Now, myReflectable is used as metadata
somewhere in the program, and each kind of capability is only applicable as an annotation in
certain locations, which is discussed below.

10

Figure 4 shows how capabilities and annotations can be constructed, generally starting from an
apiSelection*. The non-terminals in this part of the grammar have been named after the
intended location of the metadata which is or contains a capability of the corresponding kind.

Non-terminals | Expansions

reflector Reflectable (targetMetadata)

targetMetadata | apiSelection* | subtypeQuantify (apiSelection*) |
admitSubtype (apiSelection*)

globalMetadata | globalQuantify (RegExp, reflector) |
globalQuantifyMeta (MetadataClass, reflector)

Figure 4. Reflectable capability language target selection constructs.

In practice, a reflector is an instance of a subclass of class Reflectable thatis directly
attached to a class as metadata, or passed to a global quantifier; in the running example it is the
object myReflectable. The reflector has one piece of state that we model with
targetMetadata. In the grammar in Fig. 4 we use the identifier Reflectable to stand for all the
subclasses, and we model the state by letting it take the corresponding targetMetadata as an
argument. The semantics of annotating a class with a given reflector depends on the
targetMetadata, as described below.

A targetMetadata capability can be a base level set of capabilities, that is, an apiSelection*, and
it can also be a quantifier taking such an apiSelection* as an argument. The semantics of
attaching a reflector containing a plain apiSelection* to a target class C is that reflection support
at the level specified by the given apiSelection* is provided for the class C and instances
thereof. The semantics of attaching a reflector containing subtypeQuanti fy (apiSelection*)
to a class C is that the reflection support specified by the given apiSelection* is provided for all
classes which are subtypes of the class C, including C itself, and their instances. The semantics
of attaching a reflector containing admitSubtype (apiSelection*) to a class C is a pragmatic
mix of the former two which is subtle enough to warrant a slightly more detailed discussion,
given in the next section. The basic idea is that it allows instances of subtypes of the target
class to be treated as if they were instances of the target class.

Finally, we support side tags using global quantifiers, globalQuantify (RegExp, reflector)
and globalQuantifyMeta (MetadataClass, reflector) . Currently, we have decided that they
must be attached as metadata to an import statement importing
package:reflectable/reflectable.dart, but we may relax this restriction if other
placements turn out to be helpful in practice. Due to the monotone semantics of capabilities it is

11

not a problem if a given program contains more than one such globalMetadata, the provided
reflection support will simply be the least one that satisfies all requests.

The semantics of having globalQuantify (RegExp, reflector) in a program is ideally
identical to the semantics of having the given reflector attached directly to each of those classes
in the program whose qualified name matches the given RegExp. Similarly, the semantics of
having globalQuantifyMeta (MetadataClass, reflector) in a program is ideally identical to
the semantics of having the given reflector attached directly to each of those classes whose
metadata includes an instance of type MetadataClass. At this point, however, we must add an
adjustment to the ideal goal that the semantics is identical: Access to private declarations may
not be fully supported with a globalMetadata. This is discussed in the next section.

Completely or Partially Mirrored Instances?

Traditionally, it is assumed that reflective access to an instance, a class, or some other entity
will provide a complete and faithful view of that entity. For instance, it should be possible for
reflective code to access features declared as private even when that reflective code is located
in a context where non-reflective access to the same features would not be allowed. Moreover,
when a reflective lookup is used to learn which class a given object is an instance of, it is
expected that the response describes the actual runtime type of the object, and not some
superclass such as the statically known type of that object in some context.

In the package reflectable there are reasons for violating this completeness assumption,
and some of them are built-in consequences of the reasons for having this package in the first
place. In other words, these restrictions will not go away entirely. Other restrictions may be lifted
in the future, because they were introduced based on certain trade-offs made in the
implementation of the package.

The main motivation for providing the package reflectable is that the more general support
for reflection provided by the dart :mirrors package tends to be too costly at runtime in
terms of program size. Hence, it is a core point for reflectable to specify a restricted version
of reflection that fits the purposes of a given program, such that it can be done using a
significantly smaller amount of space. Consequently, it will be perfectly normal for such a
program to have reflective support for an object without reflective access to, say, some of its
methods. There are several other kinds of coverage which is incomplete by design, and they are
not a problem: they are part of the reason for using package reflectable in the first place.

The following subsections discuss two different situations where some restrictions apply that are
not there by design. We first discuss cases where access to private features is incomplete, and
then we discuss the consequences of admitting subtypes as specified with

admitSubtype (apiSelection*) .

12

Privacy Related Restrictions

The restrictions discussed in this subsection are motivated by trade-offs in the implementation in
package reflectable, so we need to mention some implementation details. The package
reflectable has been designed for program transformation, i.e., it is intended that a source
to source transformer shall be able to receive a given program (which is using package
reflectable, and indirectly dart :mirrors) as input, and transform it to an equivalent
program that does not use dart :mirrors, generally by generating mirror implementation
classes containing ordinary, non-reflective code.

Ordinary code cannot violate privacy restrictions. Hence, reflective operations cannot, say, read
or write a private field in a different library. The implication is that private access can only be
supported for classes declared in a library which can be transformed, because only then can the
generated mirror implementation class coexist with the target class. Using a transformer as we
currently do (and plan to do in the future), all libraries in the client package can be transformed.
However, libraries outside the client package cannot be transformed, which in particular matters
for libraries from other packages, and for pre-defined libraries.

For some libraries which cannot be transformed, it would be possible to create a local copy of
the library in the client package and modify the program globally such that it uses that local
copy, and such that the semantics of the copied library is identical to the semantics of the
original. This cannot be done for libraries that contain language primitives which cannot be
implemented in the language; for instance, the pre-defined class int cannot be replaced by a
user-defined class. Moreover, the need to copy and adjust one library could propagate to
another library, e.g., if the latter imports the former. Hence, not even this workaround would
enable transformation of all libraries. We do not currently have any plans to use this kind of
techniques, and hence only libraries in the current package can be transformed.

Given that the main transformation technique for package reflectable is to generate a
number of mirror classes for each target class, this means that access to private declarations
cannot be supported for classes in libraries that cannot be transformed. This applies to private
classes as a whole, and it applies to private declarations in public classes.

It should be noted that transformation of libraries imported from other packages might be
manageable to implement, but it requires changes to the basic tools used to process Dart
programs, e.g., pub. Alternatively, it is possible that this restriction can be lifted in general in the
future, if the tools (compilers, analyzers, etc.) are modified to support a privacy overriding
mechanism.

Considerations around Admitting Subtypes

13

When a targetMetadata on the form apiSelection* is attached to a given class C, the effect is
that reflection support is provided for the class C and for instances of C. However, that support
can be extended to give partial reflection support for instances of subtypes of C in a way that
does not incur further costs in terms of program size: A mirror generated for instances of class C
can have a reflectee (the object being mirrored by that mirror) whose type is a proper
subtype of C. A targetMetadata on the form admi tSubtype (apiSelection*) is used to specify
exactly this: It enables an instance mirror to hold a reflectee which is an instance of a proper
subtype of the type that the mirror was generated for.

The question arises which instance mirror to use for a given object O with runtime type D which
is given as an argument to the operation reflect on a reflector, when there is no mirror class
which was created for exactly D. This is the situation where a subtype reflectee is actually
admitted. In general, there may be multiple candidate mirror classes corresponding to classes
C,, C,, .. C, which are “least supertypes of D" in the sense that no type E is a proper supertype of
D and a proper subtype of C, for any i (this also implies that no two classes C, and C; are
subtypes of each other). The language specification includes an algorithm which will find a
uniquely determined supertype of C, .. C, which is called their least upper bound. We cannot
use this algorithm directly because we have an arbitrary subset of the types in a type hierarchy
rather than all types, and then we need to make a similar decision for this “sparse” subtype
hierarchy that only includes classes with reflection support from the given reflector.
Nevertheless, we expect that it is possible to create a variant of the least upper bound algorithm
which will work for these sparse subtype hierarchies.

It should be noted that a very basic invariant which is commonly assumed for reflection support
in various languages is violated: An instance mirror constructed for type C can have a reflectee
which is an instance of a proper subtype D. Of course, not all mirror systems have anything like
the notion of a mirror that is constructed for a given type, but the corresponding problem is
relevant everywhere: The mirror will not report on the properties of the object as-is, it will report
on the properties of instances of a supertype. This is a kind of incompleteness, and it even
causes the mirror to give plain incorrect descriptions of the object in some cases.

In particular, assume that an object O with runtime type D is given, and that we have an
instance mirror IM whose reflectee is O. Assume that the class of IM was generated for
instances of a class C, which is a proper supertype of D. It is only because of admitSubtype
that it is even possible for IM to have a reflectee whose runtime type is not C. In many
situations this discrepancy makes no difference and /M works fine with O, but it is informative to
focus on a case where it really matters:

Let us use a reflective operation on IM to get a class mirror for the class of O. IM.t ype will
return an instance CM of the class mirror for C, not a class mirror for O’s actual runtime type D. If
a programmer uses this approach to look up the name of the class of an object like O, the
answer will simply be wrong, it says "C" and it should have said "D". Similarly, if we traverse
the superclasses we will never see the class D, nor the intermediate classes between D and C.

14

A real-world example is serialization: if we look up the declarations of fields in order to serialize
the reflectee then we will silently fail to include the fields declared in the ignored subclasses
down to D. In general, there are many unpleasant surprises waiting for the naive user of this
feature, so it should be considered to be an expert-only option.

Why not just do the “right thing” and return a class mirror for D? It is not possible to simply check
the runtimeType of reflectee in the implementation of the method type, and then deliver
a class mirror of D because, typically, there is no class mirror for D. In fact, the whole point of
having the admitSubtype quantifier is that it saves space because a potentially large number
of subtypes of a given type can be given partial reflection support without the need to generate
a correspondingly large number of mirror classes.

To further clarify what it means to get ‘partial’ reflective support, consider some cases:

Reflectively calling instance methods on O which are declared in C or inherited into C will work
as expected, and standard object-oriented method invocation will ensure that it is the correct
method implementation for O which is called, not just the most specific implementation which is
available in C.

Calling instance methods on O which are declared in a proper subtype of C, including methods
from D itself, will not work. This is because the class of IM has been generated under the
assumption that no such methods exist, it only knows about ¢ methods. As mentioned, if we
fetch the class of O we may get a proper supertype of the actual class of O, and hence all the
derived operations will be similarly affected. For instance, the declarations from CM will be the
declarations in C, and they have nothing to do with the declarations in D. Similarly, if we traverse
the superclasses then we will only see a strict suffix of the actual list of superclasses of the class
of O.

Based on these serious issues, we have decided that when an instance mirror is associated
with the admitSubtype quantifier, it shall be an error to execute the type method in order to
obtain a mirror of a class, because it is very unlikely to work as intended when that class is in
fact not the class of the reflectee. It would be possible to allow it in the cases where the match
happens to be perfect, but this would be difficult for programmers to use, and they may as well
use reflectType directly if they want to reflect upon a class which is not taken directly from
an instance.

In summary, there is a delicate trade-off to make in the case where an entire subtype hierarchy
should be equipped with reflection support. The trade off is to either pay the price in terms of
program size and get full support (using subtypeQuantify); or to save space aggressively
and in return tolerate the partial support for reflection (using admi tSubtype).

15

Summary

We have described the design of the capabilities used in the package reflectable to specify
the desired level of support for reflection. The underlying idea is that the capabilities at the base
level specify a selection of operations from the API of the mirror classes, along with some
simple restrictions on the allowable arguments to those operations. On top of that, the API
based capabilities can be associated with specific parts of the target program (though at this
point only classes) such that exactly those classes will have the reflection support specified with
the API based capabilities. The target classes can be selected individually, by adding a reflector
as metadata on each target class. Alternatively, target classes can be selected by quantification:
It is possible to quantify over all subtypes, in which case not only the class C that holds the
metadata receives reflection support, but also all subtypes of C. Finally, it is possible to admit
instances of subtypes as reflectees of a small set of mirrors, such that partial reflection support
is achieved for many classes, without the cost of having many mirror classes.

16

